The Allen-cahn Action Functional in Higher Dimensions
نویسندگان
چکیده
Abstract. The Allen–Cahn action functional is related to the probability of rare events in the stochastically perturbed Allen–Cahn equation. Formal calculations suggest a reduced action functional in the sharp interface limit. We prove in two and three space dimensions the corresponding lower bound. One difficulty is that diffuse interfaces may collapse in the limit. We therefore consider the limit of diffuse surface area measures and introduce a generalized velocity and generalized reduced action functional in a class of evolving measures. As a corollary we obtain the Gamma convergence of the action functional in a class of regularly evolving hypersurfaces.
منابع مشابه
The existence of global attractor for a Cahn-Hilliard/Allen-Cahn equation
In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0
متن کاملHigher Multiplicity in the One-Dimensional Allen-Cahn Action Functional
We prove the Γ-convergence of the one-dimensional Allen-Cahn action functional in the sharp-interface limit. In previous work, a good lower bound was developed under the assumption of single multiplicity, but the bound deteriorated in the case of higher multiplicity interfaces. We develop an improved bound by working directly with the limiting energy measures.
متن کاملSlow motion for the nonlocal Allen–Cahn equation in n-dimensions
The goal of this paper is to study the slow motion of solutions of the nonlocal Allen–Cahn equation in a bounded domain Ω ⊂ R, for n > 1. The initial data is assumed to be close to a configuration whose interface separating the states minimizes the surface area (or perimeter); both local and global perimeter minimizers are taken into account. The evolution of interfaces on a time scale ε−1 is d...
متن کاملConvergence of Perturbed Allen–cahn Equations to Forced Mean Curvature Flow
We study perturbations of the Allen–Cahn equation and prove the convergence to forced mean curvature flow in the sharp interface limit. We allow for perturbations that are square-integrable with respect to the diffuse surface area measure. We give a suitable generalized formulation for forced mean curvature flow and apply previous results for the Allen–Cahn action functional. Finally we discuss...
متن کاملPrimal-dual active set methods for Allen-Cahn variational inequalities
This thesis aims to introduce and analyse a primal-dual active set strategy for solving Allen-Cahn variational inequalities. We consider the standard Allen-Cahn equation with non-local constraints and a vector-valued Allen-Cahn equation with and without non-local constraints. Existence and uniqueness results are derived in a formulation involving Lagrange multipliers for local and non-local con...
متن کامل